Reduce Construction Waste Going to Landfill

Estimated wood waste from 2,000 ft2 home – 3,000 lbs or 11 yds3
Grind and Reuse Wood Products

Georgia EPD
No treated wood
No concerns with dimension lumber
Questions about engineered wood products
Builders won’t separate
Engineered Wood Products

EWP glues – phenol formaldehyde, isocyanate resins, resorcinol

Finger-jointed studs glues – vinyl acetates and polyurethane
Engineered Wood Product Study

Evaluating environmental and plant growth effects of EWP mulch

– Changes in soil chemistry
– Compounds in surface runoff
– Plant growth effects
Treatments

BSC - Bare Soil Control
DLC - 100% Dimension Lumber

EWP - 100% Engineered Wood Products
TRM - Typical Residential Mix
Treatments – 100% EWP

60% OSB
20% Plywood
5% Laminated veneer
5% Glulam
10% I-joist
Treatments – Residential Mix

30% EWP
25% Finger-jointed studs
45% Dimensional lumber
 25% White wood
 20% Yellow pine
First Screen - TCLP

100% EWP
Barium 0.295 mg/L; reg limit 5mg/L

Residential Mix
Pentachlorophenol 0.83 mg/L; reg limit 100 mg/L
Barium 0.299 mg/L; reg limit 5mg/L
Rainfall Simulation

May ’02 – 4 in/hr
100-yr 1 hr rainfall
Drought

May ’03 – 2.5 in/hr
10 yr 1 hr rainfall
Very wet

Initial soil moisture conditions measured - TDR
Rainfall Simulation

Volume-weighted runoff analyzed:

Tot N, NO₃-N, NH₄-N, Tot P, Ortho P, DOC, pH, specific conductance, BOD₅, volatile organics, total phenol; Runoff volume and TSS every 5 min.
Runoff Water Quality

2002 organic compound screening, compounds associated with perfumes and plastics

2003 quantitative analyses of purgeable halocarbons, BTEX, and phenols – non detected
Runoff Water Quality

Nitrogen from EWP significantly higher than other treatments due to organic nitrogen and ammonium-nitrogen.

Phosphorus concentrations fairly low (< 1 mg L\(^{-1}\)), but higher than USEPA criteria for streams (0.03 mg L\(^{-1}\)).
Runoff Water Quality

Note decreases in nutrient concentrations, particularly nitrogen, after one year.
Sampling May 2002

Turbidity during 1 hr 4 inch rainstorm; very effective for erosion control
Soil Sampling

Soils 0-2 and 2-6 in.
pH, lime requirement, avail P, Ca, Mg, Mn, Zn, tot N, NO$_3$-N, NH$_4$-N, S, Na, OM and microbial biomass

Before mulch put out and 1 year later
Surface Soils

Increase in ammonium-nitrogen and available phosphorus in surface (0-2 in.) Did not see increase at 2-6 in.
Plant Growth Study

Azalea

Lorapetalum

Burford holly

Center for Applied Nursery Research, McCorkle Nursery
Dr. Wayne McLaurin
Plant Growth Study

Treatments:
- standard potting mix
- standard potting mix + 3 in EWP mulch
- standard potting mix + 3 in TRM mulch
- standard potting mix + 2 in EWP mulch and topdress pine needles

Measure – Ht + width; dry wt, visual roots
Plant Growth Study

Grown 18 months;

No growth difference, no adverse impacts; roots grew into EWP mulch
Conclusions

Study indicate mulches with EWP component safe

One-time application

Loadings low

Can be used for:

Erosion control,

Heavy use substrate, or

Landscape mulch

(Published in Trans. ASAE 48(5): 1731-1738.)
Conclusions

Erosion control

Blankets and berms (similar to compost)
Conclusions

Heavy use areas or delivery pads
Conclusions

Mulch

No more than 2 to 3 inches

Keep 6 to 8 inches from foundation (termites)

Can top dress with pine needles
Thanks to All!

Funded by P2AD through the Solid Waste Trust Fund.

We appreciate the help of Steve Sandell – APA, Packer Industries, Tim Mayo – Universal Forest Products, Mr. Walter Boyles – Timber Products Inspection.

Dr. David Radcliffe, Dr. Larry West, Britt Faucette, Rebecca Byrd, Javier Sayago, Seth Sokol, Brian Bibbins, Jason Foster, Jason Governo, Anna Cathey, Jared, University of Georgia