Watershed Assessment Program Team

Georgia Report David Radcliffe University of Georgia

- <u>Monitoring Activities</u>
- Modeling Activities
- Remote Sensing / GIS
- Sources of Funding
- What do We Need for Extension

- Several projects with headwater stream monitoring sites
 - Un-refrigerated ISCO samplers and pressure transducers
 - Measuring
 - Suspended sediment (filter method)
 - Total P and dissolved reactive P (DRP)
 - Fecal coliform grab samples on some streams
 - E. coli grab samples on some streams
 - Stage height
- Converting stage height to flow is a problem

- Project comparing 6 headwater streams
 - 2 forested watersheds
 - 2 agricultural watersheds (1 dairy and 1 poultry/cattle)
 - 2 suburban watersheds on septics

- Project comparing 12 headwater streams
 - 3 forested watersheds
 - 9 poultry and cattle watersheds with different levels of BMPs for litter and cattle
- Project comparing three 2nd-3rd order streams for sediment control
 - Paired watersheds
 - One control and 2 treatment watersheds
 - Focus on road/ditch erosion

- TMDL related monitoring
 - State has a 5-year rotating basin approach
 - 5 basins in state are monitored intensely for 2 years before updating TMDL
 - Monitoring is done by USGS on contract from state

- Much more monitoring being done by cities and local governments
 - Source water assessment work done by consultants
 - Phase I and II Municipal Separate Stormwater Systems (MS4) requirements
 - Used in implementation phase of TMDLs to identify bacteria sources

- What have we learned?
 - Measuring flow correctly is important
 - Forested streams have best water quality
 - Usually meet bacteria standards
 - Agricultural stream water quality varies widely
 - Worst when animal density is high
 - Suburban streams are intermediate
 - We need to know more about urban flow and pollutant concentrations

- Monitoring Activities
- Modeling Activities
- Remote Sensing / GIS
- Sources of Funding
- What do We Need for Extension

- Most of our work is with SWAT
 - Modeling flow, sediment, and P
 - Watershed scale and smaller headwater stream scale
- Problems in modeling smaller scale
 - Need SSURGO data and not always available
 - Difficult to fit hydrograph -- use hourly time step?

- Exploring issues on modeling P
 - Getting parameter values for adsorption (*PHOSKD*) and initial soil P (*SOL_LABP*)
 - Getting records for point sources such as poultry processing plants
 - No information on in-stream parameters
 - Effect of ponds and lakes?

- Some work with HSPF
 - Draft book chapter
 - Proposal to model urban storm-water control practices
- Teach advanced graduate course
 - BASINS and SWAT
 - Policy issues

- Large effort on using Parameter Estimation (PEST) software with SWAT and HSPF
 - Sensitivity analysis
 - Auto-calibration
 - Prediction uncertainty
- Done by a post-doc (Zhulu Lin)
 - Hard work!

Parameter	Sensitivity to Flow	Parameter	Sensitivity to Sediment	Parameter	Sensitivity to P
AGWRC	8.647 🗸	AGWRC	1.4283	XFIX	0.2260 🗸
UZSN	0.0625 🗸	EXPSND	0.2347 🗸	INFILT_F	0.0879
LZETP F	0 0 589 🗸	TAUCSS	0 1996 🗸	NI	0 0767
IRC	0.0575 🗸	TAUCSC	0.1996	INFILT_P	0.0752
INFILT_F	0.0494 🗸	KSAND	0.0645	LZETP_P	0.0605
LZSN	0.0377 🗸	TAUCDS	0.0344 🗸	K1	0.0605 🗸
LZETP_P	0.0298 🗸	М	0.0197 🗸	IRC	0.0538
CEPSC_F	0.0182	LZETP_F	0.0180	INTFW	0.0367
INTFW	0.0165	LZSN	0.0156	SPFAD_P	0.0303 🗸
INFILT_P	0.0161	UZSN	0.0138	AGWRC	0.0276
DEEPFR	0.0079	IRC	0.0118	BRPO4	0.0238 🗸
LZETP_U	0.0052	INFILT_F	0.0094	UZSN	0.0191
LSUR	0.0040	LZETP_P	0.0085	SLMPF	0.0173 🗸
NSUR	0.0040	INFILT_P	0.0068	KMP	0.0170 🗸
INFILTU	0.0038	INFILT_U	0.0053	LZETP_F	0.0159

- State is doing very little model work for TMDLs
 - Relies mostly on monitoring to calculate current loads
 - Little effort to identify sources or run scenarios
- Some lake TMDLs are done by consultants
 Nice work done by TetraTech using HSPF and WASP
- TMDL implementation is left to regional and local governments
 - They are struggling with little funding or guidance

- What have we learned?
 - Watershed P load dominated by non-point sources
 - SWAT & HSPF very similar
 - Easier to get soil parameters for SWAT
 - More detail of in-stream processes and hourly time step with HSPF
 - P adsorption and initial P in soil sensitive parameters
 - Using PEST for auto-calibration probably not worth the trouble
 - Good for sensitivity analysis and first step toward uncertainty analysis

- Monitoring Activities
- Modeling Activities
- <u>Remote Sensing / GIS</u>
- Sources of Funding
- What do We Need for Extension

Remote Sensing & GIS

- Very little work in this area
 - Use data that is available on the web
 - Need SSURGO data for some counties
- Used UGA soil test lab database for soil test P values in watersheds
- Generated map of poultry operations used aerial photos

Remote Sensing & GIS

- Monitoring Activities
- Modeling Activities
- Remote Sensing / GIS
- Sources of Funding
- What do We Need for Extension

Sources of Funding

- CSREES 406 water quality grant on establishing a framework for trading P credits
- Two 319 grants subcontracts for monitoring
 - One on riparian buffer demonstration
 - Second on watershed restoration focusing on road/ditch erosion
- Preparing proposal for EPA Region 4 RFP on urban storm-water control practices

- Monitoring Activities
- Modeling Activities
- Remote Sensing / GIS
- Sources of Funding
- What do We Need for Extension

Products for Extension?

- What watershed assessment tools/results can we provide?
- Is there some sort of training or workshops we could provide?
- Is there something we could make available on the web?

Extension Products

- We can provide conventional research
 results
 - Probably in the form of journal articles
 - Monitoring studies provide information on water quality associated with different land uses
 - Model results give estimates of P and sediment "budgets" for watersheds

Products for Extension

- Unlikely we will be training county agents or even extension specialists to run models
 - Simple models might be an exception (PLOAD) but how useful would they be?
- May be possible that researchers will be working with extension specialists and stakeholder groups to run different model scenarios for watersheds
 - Will need to be ready to respond quickly to requests from stakeholders

Products for Extension

- Should we consider putting some of our results in "white papers"?
 - We have done one on Sediment TMDLs
 - Another is in draft stage on Bacteria TMDLs
- Are there watershed assessment tools short of models that extension could use?
 - BASINS has a "Watershed Characteristics" capability
 - Delineates watershed
 - Gives point sources, land uses, soils, etc.